OpamParallel.MakeGraphinclude Graph.Sig.I with type E.label = dependency_label with type V.t = V.tAn imperative graph is a graph.
include Graph.Sig.G with type E.label = dependency_label with type V.t = V.tmodule V : Graph.Sig.VERTEX with type t = V.tVertices have type V.t and are labeled with type V.label (note that an implementation may identify the vertex with its label)
type vertex = V.tmodule E : Graph.Sig.EDGE with type vertex = vertex with type label = dependency_labelEdges have type E.t and are labeled with type E.label. src (resp. dst) returns the origin (resp. the destination) of a given edge.
type edge = E.tval is_empty : t -> boolval nb_vertex : t -> intval nb_edges : t -> intDegree of a vertex
find_edge g v1 v2 returns the edge from v1 to v2 if it exists. Unspecified behaviour if g has several edges from v1 to v2.
find_all_edges g v1 v2 returns all the edges from v1 to v2.
You should better use iterators on successors/predecessors (see Section "Vertex iterators").
Labeled edges going from/to a vertex
Iter on all edges of a graph. Edge label is ignored.
Fold on all edges of a graph. Edge label is ignored.
Each iterator iterator f v g iters f to the successors/predecessors of v in the graph g and raises Invalid_argument if v is not in g. It is the same for functions fold_* which use an additional accumulator.
<b>Time complexity for ocamlgraph implementations:</b> operations on successors are in O(1) amortized for imperative graphs and in O(ln(|V|)) for persistent graphs while operations on predecessors are in O(max(|V|,|E|)) for imperative graphs and in O(max(|V|,|E|)*ln|V|) for persistent graphs.
iter/fold on all successors/predecessors of a vertex.
iter/fold on all edges going from/to a vertex.
val create : ?size:int -> unit -> tcreate () returns an empty graph. Optionally, a size can be given, which should be on the order of the expected number of vertices that will be in the graph (for hash tables-based implementations). The graph grows as needed, so size is just an initial guess.
val clear : t -> unitRemove all vertices and edges from the given graph.
copy g returns a copy of g. Vertices and edges (and eventually marks, see module Mark) are duplicated.
add_vertex g v adds the vertex v to the graph g. Do nothing if v is already in g.
remove g v removes the vertex v from the graph g (and all the edges going from v in g). Do nothing if v is not in g.
<b>Time complexity for ocamlgraph implementations:</b> O(|V|*ln(D)) for unlabeled graphs and O(|V|*D) for labeled graphs. D is the maximal degree of the graph.
add_edge g v1 v2 adds an edge from the vertex v1 to the vertex v2 in the graph g. Add also v1 (resp. v2) in g if v1 (resp. v2) is not in g. Do nothing if this edge is already in g.
add_edge_e g e adds the edge e in the graph g. Add also E.src e (resp. E.dst e) in g if E.src e (resp. E.dst
e) is not in g. Do nothing if e is already in g.
remove_edge g v1 v2 removes the edge going from v1 to v2 from the graph g. If the graph is labelled, all the edges going from v1 to v2 are removed from g. Do nothing if this edge is not in g.
include Graph.Oper.S with type g = ttype g = tadd_transitive_closure ?reflexive g replaces g by its transitive closure. Meaningless for persistent implementations (then acts as transitive_closure).
transitive_reduction ?reflexive g returns the transitive reduction of g (as a new graph). Loops (i.e. edges from a vertex to itself) are removed only if reflexive is true (default is false).
replace_by_transitive_reduction ?reflexive g replaces g by its transitive reduction. Meaningless for persistent implementations (then acts as transitive_reduction).
mirror g returns a new graph which is the mirror image of g: each edge from u to v has been replaced by an edge from v to u. For undirected graphs, it simply returns g. Note: Vertices are shared between g and mirror g; you may need to make a copy of g before using mirror
complement g returns a new graph which is the complement of g: each edge present in g is not present in the resulting graph and vice-versa. Edges of the returned graph are unlabeled.
intersect g1 g2 returns a new graph which is the intersection of g1 and g2: each vertex and edge present in g1 *and* g2 is present in the resulting graph.
module Topological : sig ... endmodule Dot : sig ... endval transitive_closure : ?reflexive:bool -> t -> unitval to_json : t OpamJson.encoderval of_json : t OpamJson.decoder