Base.Hashtbl
A hash table is a mutable data structure implementing a map between keys and values. It supports constant-time lookup and in-place modification.
As a simple example, we'll create a hash table with string keys using the create
constructor, which expects a module defining the key's type:
let h = Hashtbl.create (module String);;
val h : (string, '_a) Hashtbl.t = <abstr>
We can set the values of individual keys with set
. If the key already has a value, it will be overwritten.
Hashtbl.set h ~key:"foo" ~data:5;; - : unit = () Hashtbl.set h ~key:"foo" ~data:6;; - : unit = () Hashtbl.set h ~key:"bar" ~data:6;; - : unit = ()
We can access values by key, or dump all of the hash table's data:
Hashtbl.find h "foo";; - : int option = Some 6 Hashtbl.find_exn h "foo";; - : int = 6 Hashtbl.to_alist h;; - : (string * int) list = [("foo", 6); ("bar", 6)]
change
lets us change a key's value by applying the given function:
Hashtbl.change h "foo" (fun x -> match x with | Some x -> Some (x * 2) | None -> None );; - : unit = () Hashtbl.to_alist h;; - : (string * int) list = [("foo", 12); ("bar", 6)]
We can use merge
to merge two hashtables with fine-grained control over how we choose values when a key is present in the first ("left") hashtable, the second ("right"), or both. Here, we'll cons the values when both hashtables have a key:
let h1 = Hashtbl.of_alist_exn (module Int) [(1, 5); (2, 3232)] in let h2 = Hashtbl.of_alist_exn (module Int) [(1, 3)] in Hashtbl.merge h1 h2 ~f:(fun ~key:_ -> function | `Left x -> Some (`Left x) | `Right x -> Some (`Right x) | `Both (x, y) -> if x=y then None else Some (`Both (x,y)) ) |> Hashtbl.to_alist;; - : (int * [> `Both of int * int | `Left of int | `Right of int ]) list = [(2, `Left 3232); (1, `Both (5, 3))]
We provide a sexp_of_t
but not a t_of_sexp
for this type because one needs to be explicit about the hash and comparison functions used when creating a hashtable. Note that Hashtbl.Poly.t
does have [@@deriving sexp]
, and uses OCaml's built-in polymorphic comparison and and polymorphic hashing.
val create : ?growth_allowed:bool -> ?size:int ->
(module Base__Hashtbl_intf.Key.S with type t = 'a) -> ('a, 'b) t
The module you pass to create
must have a type that is hashable, sexpable, and comparable.
Example:
Hashtbl.create (module Int);; - : (int, '_a) Hashtbl.t = <abstr>;;
val of_alist : ?growth_allowed:bool -> ?size:int ->
(module Base__Hashtbl_intf.Key.S with type t = 'a) -> ('a * 'b) list -> [ `Ok of ('a, 'b) t | `Duplicate_key of 'a ]
Example:
Hashtbl.of_alist (module Int) [(3, "something"); (2, "whatever")] - : [ `Duplicate_key of int | `Ok of (int, string) Hashtbl.t ] = `Ok <abstr>
val of_alist_report_all_dups : ?growth_allowed:bool -> ?size:int ->
(module Base__Hashtbl_intf.Key.S with type t = 'a) -> ('a * 'b) list -> [ `Ok of ('a, 'b) t | `Duplicate_keys of 'a list ]
Whereas of_alist
will report Duplicate_key
no matter how many dups there are in your list, of_alist_report_all_dups
will report each and every duplicate entry.
For example:
Hashtbl.of_alist (module Int) [(1, "foo"); (1, "bar"); (2, "foo"); (2, "bar")];; - : [ `Duplicate_key of int | `Ok of (int, string) Hashtbl.t ] = `Duplicate_key 1 Hashtbl.of_alist_report_all_dups (module Int) [(1, "foo"); (1, "bar"); (2, "foo"); (2, "bar")];; - : [ `Duplicate_keys of int list | `Ok of (int, string) Hashtbl.t ] = `Duplicate_keys [1; 2]
val of_alist_or_error : ?growth_allowed:bool -> ?size:int ->
(module Base__Hashtbl_intf.Key.S with type t = 'a) -> ('a * 'b) list -> ('a, 'b) t Or_error.t
val of_alist_exn : ?growth_allowed:bool -> ?size:int ->
(module Base__Hashtbl_intf.Key.S with type t = 'a) -> ('a * 'b) list -> ('a, 'b) t
val of_alist_multi : ?growth_allowed:bool -> ?size:int ->
(module Base__Hashtbl_intf.Key.S with type t = 'a) -> ('a * 'b) list -> ('a, 'b list) t
Creates a "multi" hashtable, i.e., a hashtable where each key points to a list potentially containing multiple values. So instead of short-circuiting with a `Duplicate_key
variant on duplicates, as in of_alist
, of_alist_multi
folds those values into a list for the given key:
let h = Hashtbl.of_alist_multi (module Int) [(1, "a"); (1, "b"); (2, "c"); (2, "d")];; val h : (int, string list) Hashtbl.t = <abstr> Hashtbl.find_exn h 1;; - : string list = ["b"; "a"]
val create_mapped : ?growth_allowed:bool -> ?size:int ->
(module Base__Hashtbl_intf.Key.S with type t = 'a) -> get_key:('r -> 'a) -> get_data:('r -> 'b) ->
'r list -> [ `Ok of ('a, 'b) t | `Duplicate_keys of 'a list ]
Applies the get_key
and get_data
functions to the 'r list
to create the initial keys and values, respectively, for the new hashtable.
create_mapped get_key get_data [x1;...;xn]
= of_alist [get_key x1, get_data x1; ...; get_key xn, get_data xn]
Example:
let h = Hashtbl.create_mapped (module Int) ~get_key:(fun x -> x) ~get_data:(fun x -> x + 1) [1; 2; 3];; val h : [ `Duplicate_keys of int list | `Ok of (int, int) Hashtbl.t ] = `Ok <abstr> let h = match h with | `Ok x -> x | `Duplicate_keys _ -> failwith "" in Hashtbl.find_exn h 1;; - : int = 2
val create_with_key : ?growth_allowed:bool -> ?size:int ->
(module Base__Hashtbl_intf.Key.S with type t = 'a) -> get_key:('r -> 'a) ->
'r list -> [ `Ok of ('a, 'r) t | `Duplicate_keys of 'a list ]
create_with_key ~get_key [x1;...;xn]
= of_alist [get_key x1, x1; ...; get_key xn, xn]
val create_with_key_or_error : ?growth_allowed:bool -> ?size:int ->
(module Base__Hashtbl_intf.Key.S with type t = 'a) -> get_key:('r -> 'a) -> 'r list -> ('a, 'r) t Or_error.t
val create_with_key_exn : ?growth_allowed:bool -> ?size:int ->
(module Base__Hashtbl_intf.Key.S with type t = 'a) -> get_key:('r -> 'a) -> 'r list -> ('a, 'r) t
val group : ?growth_allowed:bool -> ?size:int ->
(module Base__Hashtbl_intf.Key.S with type t = 'a) -> get_key:('r -> 'a) -> get_data:('r -> 'b) ->
combine:('b -> 'b -> 'b) -> 'r list -> ('a, 'b) t
Like create_mapped
, applies the get_key
and get_data
functions to the 'r
list
to create the initial keys and values, respectively, for the new hashtable -- and then, like add_multi
, folds together values belonging to the same keys. Here, though, the function used for the folding is given by combine
(instead of just being a cons
).
Example:
Hashtbl.group (module Int) ~get_key:(fun x -> x / 2) ~get_data:(fun x -> x) ~combine:(fun x y -> x * y) [ 1; 2; 3; 4] |> Hashtbl.to_alist;; - : (int * int) list = [(2, 4); (1, 6); (0, 1)]
val clear : (_, _) t -> unit
Attempting to modify (set
, remove
, etc.) the hashtable during iteration (fold
, iter
, iter_keys
, iteri
) will raise an exception.
val iter : (_, 'b) t -> f:('b -> unit) -> unit
Iterates over both keys and values.
Example:
let h = Hashtbl.of_alist_exn (module Int) [(1, 4); (5, 6)] in Hashtbl.iteri h ~f:(fun ~key ~data -> print_endline (Printf.sprintf "%d-%d" key data));; 1-4 5-6 - : unit = ()
val exists : (_, 'b) t -> f:('b -> bool) -> bool
val for_all : (_, 'b) t -> f:('b -> bool) -> bool
val count : (_, 'b) t -> f:('b -> bool) -> int
val length : (_, _) t -> int
val is_empty : (_, _) t -> bool
add
and add_exn
leave the table unchanged if the key was already present.
change t key ~f
changes t
's value for key
to be f (find t key)
.
update t key ~f
is change t key ~f:(fun o -> Some (f o))
.
map t f
returns a new table with values replaced by the result of applying f
to the current values.
Example:
let h = Hashtbl.of_alist_exn (module Int) [(1, 4); (5, 6)] in let h' = Hashtbl.map h ~f:(fun x -> x * 2) in Hashtbl.to_alist h';; - : (int * int) list = [(5, 12); (1, 8)]
Like map
, but the function f
takes both key and data as arguments.
Returns a new table by filtering the given table's values by f
: the keys for which f
applied to the current value returns Some
are kept, and those for which it returns None
are discarded.
Example:
let h = Hashtbl.of_alist_exn (module Int) [(1, 4); (5, 6)] in Hashtbl.filter_map h ~f:(fun x -> if x > 5 then Some x else None) |> Hashtbl.to_alist;; - : (int * int) list = [(5, 6)]
Like filter_map
, but the function f
takes both key and data as arguments.
Returns new tables with bound values partitioned by f
applied to the bound values.
val partition_mapi : ('a, 'b) t -> f:(key:'a key -> data:'b -> ('c, 'd) Either.t) ->
('a, 'c) t * ('a, 'd) t
Like partition_map
, but the function f
takes both key and data as arguments.
Returns a pair of tables (t1, t2)
, where t1
contains all the elements of the initial table which satisfy the predicate f
, and t2
contains the rest.
Like partition_tf
, but the function f
takes both key and data as arguments.
find_or_add t k ~default
returns the data associated with key k
if it is in the table t
, and otherwise assigns k
the value returned by default ()
.
Like find_or_add
but default
takes the key as an argument.
find t k
returns Some
(the current binding) of k
in t
, or None
if no such binding exists.
find_exn t k
returns the current binding of k
in t
, or raises Caml.Not_found
or Not_found_s
if no such binding exists.
val find_and_call : ('a, 'b) t -> 'a key -> if_found:('b -> 'c) ->
if_not_found:('a key -> 'c) -> 'c
find_and_call t k ~if_found ~if_not_found
is equivalent to:
match find t k with Some v -> if_found v | None -> if_not_found k
except that it doesn't allocate the option.
val find_and_call1 : ('a, 'b) t -> 'a key -> a:'d -> if_found:('b -> 'd -> 'c) ->
if_not_found:('a key -> 'd -> 'c) -> 'c
Just like find_and_call
, but takes an extra argument which is passed to if_found
and if_not_found
, so that the client code can avoid allocating closures or using refs to pass this additional information. This function is only useful in code which tries to minimize heap allocation.
find_and_remove t k
returns Some (the current binding) of k in t and removes it, or None is no such binding exists.
val merge : ('k, 'a) t -> ('k, 'b) t -> f:(key:'k key ->
[ `Left of 'a | `Right of 'b | `Both of 'a * 'b ] -> 'c option) -> ('k, 'c) t
Merges two hashtables.
The result of merge f h1 h2
has as keys the set of all k
in the union of the sets of keys of h1
and h2
for which d(k)
is not None, where:
d(k) =
f ~key:k (`Left d1)
if k
in h1
maps to d1, and h2
does not have data for k
;f ~key:k (`Right d2)
if k
in h2
maps to d2, and h1
does not have data for k
;f ~key:k (`Both (d1, d2))
otherwise, where k
in h1
maps to d1
and k
in h2
maps to d2
.Each key k
is mapped to a single piece of data x
, where d(k) = Some x
.
Example:
let h1 = Hashtbl.of_alist_exn (module Int) [(1, 5); (2, 3232)] in let h2 = Hashtbl.of_alist_exn (module Int) [(1, 3)] in Hashtbl.merge h1 h2 ~f:(fun ~key:_ -> function | `Left x -> Some (`Left x) | `Right x -> Some (`Right x) | `Both (x, y) -> if x=y then None else Some (`Both (x,y)) ) |> Hashtbl.to_alist;; - : (int * [> `Both of int * int | `Left of int | `Right of int ]) list = [(2, `Left 3232); (1, `Both (5, 3))]
val merge_into : src:('k, 'a) t -> dst:('k, 'b) t -> f:(key:'k key ->
'a -> 'b option -> 'b Base__Hashtbl_intf.Merge_into_action.t) -> unit
Every key
in src
will be removed or set in dst
according to the return value of f
.
val data : (_, 'b) t -> 'b list
Returns the list of all data for given hashtable.
filter_inplace t ~f
removes all the elements from t
that don't satisfy f
.
val filter_inplace : (_, 'b) t -> f:('b -> bool) -> unit
val map_inplace : (_, 'b) t -> f:('b -> 'b) -> unit
map_inplace t ~f
applies f
to all elements in t
, transforming them in place.
val filter_map_inplace : (_, 'b) t -> f:('b -> 'b option) -> unit
filter_map_inplace
combines the effects of map_inplace
and filter_inplace
.
equal f t1 t2
and similar f t1 t2
both return true iff t1
and t2
have the same keys and for all keys k
, f (find_exn t1 k) (find_exn t2 k)
. equal
and similar
only differ in their types.
Returns the list of all (key, data) pairs for given hashtable.
val validate : name:('a key -> string) -> 'b Validate.check -> ('a, 'b) t Validate.check
remove_if_zero
's default is false
.
add_multi t ~key ~data
if key
is present in the table then cons data
on the list, otherwise add key
with a single element list.
remove_multi t key
updates the table, removing the head of the list bound to key
. If the list has only one element (or is empty) then the binding is removed.
val hashable_s : ('key, _) t -> (module Base__Hashtbl_intf.Key.S with type t = 'key)
include Invariant.S2 with type ('a, 'b) t := ('a, 'b) t
val invariant : ('a -> unit) -> ('b -> unit) -> ('a, 'b) t -> unit
module type Accessors = sig ... end
module type Creators = sig ... end
module type Key = sig ... end
module type Multi = sig ... end
module type S_poly = sig ... end
module type S_without_submodules = sig ... end
module type For_deriving = sig ... end
module Key : sig ... end
module Merge_into_action : sig ... end
M
is meant to be used in combination with OCaml applicative functor types:
include For_deriving with type ('a, 'b) t := ('a, 'b) t
module type Sexp_of_m = sig ... end
module type M_of_sexp = sig ... end